Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (6): 86-90.doi: 10.3969/j.issn.2097-0706.2022.06.010
• CO2 Capture and Utilization • Previous Articles
CHEN Yong1(), SU Junhua2,*(
), WANG Yang2(
)
Received:
2022-03-25
Revised:
2022-05-17
Published:
2022-06-25
Contact:
SU Junhua
E-mail:582756887@qq.com;sujh@chec.com.cn;wangyang@chec.com.cn
CLC Number:
CHEN Yong, SU Junhua, WANG Yang. Feasibility analysis on methane production by CO2 hydrogenation in China[J]. Integrated Intelligent Energy, 2022, 44(6): 86-90.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.06.010
Table 2
CO2 sources suitable for power to gas
CO2源 | 废气中CO2体积分数/% | 成本/(元∙t-1) | |
---|---|---|---|
生物质 | 生物质发酵 | 15.00~50.00 | 100~300 |
沼气生产 | ≈100.00 | 50 | |
生物乙醇生产 | ≈100.00 | 50 | |
电厂 | 天然气电厂 | 3.00~5.00 | 300~400 |
燃煤电厂 | 10.00~15.00 | 300~500 | |
工业 过程 | 水泥生产 | 14.00~33.00 | 200~300 |
钢铁生产 | 20.00~30.00 | 100~200 | |
环氧乙烷生产 | ≈100.00 | 50 | |
环境 | 环境空气 | 0.03~0.04 | 600~6 000 |
[1] | 国家发展和改革委, 国家能源局. 清洁能源消纳行动计划(2018―2020年):发改能源规〔2018〕1575号[Z]. 2018-10-30. |
[2] | LEHNER M, TICHLER R, STEINMULLER H, et al. Power-to-gas technology and business model[M]. Heidelberg: Springer Nature, 2014. |
[3] | BAJOHR S, GOTZ M, GRAF F, et al. Storage of renewable electric energy in the natural gas infrastructure[J]. GWF-Gas Erdgas, 2011:200-211. |
[4] | 吴皓文, 王军, 龚迎莉, 等. 储能技术发展现状及应用前景分析[J]. 电力学报, 2021, 36(5):434-443. |
WU Haowen, WANG Jun, GONG Yingli, et al. Development status and application propect analysis of energy storage technology[J]. Jouranal of Electric Power, 2021, 36(5):434-443. | |
[5] | 蒋文坤, 韩颖慧, 薛智文, 等. 多能互补能源系统中储能原理及其应用[J]. 综合智慧能源, 2021, 44(1):63-71. |
JIANG Wenkun, HAN Yinghui, XUE Zhiwen, et al. Energy storage technologies and their applications in multi-energy complementary power system[J]. Integrated Intelligent Energy, 2021, 44(1):63-71. | |
[6] | 童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述[J]. 华电技术, 2021, 43(7):17-23. |
TONG Jialin, HONG Qing, LYU Hongkun, et al. Development status and application prospect of power side energy storage technology[J]. Huadian Technology, 2021, 43(7):17-23. | |
[7] | 武永光. 二氧化碳加氢制甲醇暨新能源制氢工业化进展[J]. 化学工业, 2021, 39(2):36-39. |
WU Yongguang. Advances in industrialization for CO2 hydrogenation to methanol and hydrogen production from new energy[J]. Chemical Industry, 2021, 39(2):36-39. | |
[8] | GHAIB K. Das power-to-methane-konzept[M]. Wiesbaden: Springer Fachmedien, 2017. |
[9] | EDENHOFER O, PICHS-MADRUGA R, SOKONA Y, et al. Climate change 2014:Mitigation of climate change[M]. New York: Cambridge University Press, 2014. |
[10] |
SANZ-PEREZ E S, MURDOCK C R, DIDAS S A, et al. Direct capture of CO2 from ambient air[J]. Chemical Reviews, 2016, 116(19):11840-11876.
doi: 10.1021/acs.chemrev.6b00173 |
[11] |
LAUDE A, RICCI O, BUREAU G, et al. CO2 capture and storage from a bioethanol plant:Carbon and energy footprint and economic assessment[J]. International Journal of Greenhouse Gas Control, 2011, 5(5):1220-1231.
doi: 10.1016/j.ijggc.2011.06.004 |
[12] |
GHAIB K, NITZ K, BEN-FARES F-Z. Katalytische methanisierung von kohlenstoffdioxid[J]. Chemie Ingenieur Technik, 2016, 88(10):1435-1443.
doi: 10.1002/cite.201600066 |
[13] |
FRICK V, BRELLOCHS J, SPECHT M. Application of ternary diagrams in the design of methannation systems[J]. Fuel Processing Technology, 2014, 118:156-160.
doi: 10.1016/j.fuproc.2013.08.022 |
[14] |
STANGELAND K, KALAI D Y, LI H L, et al. Active and stable Ni based catalysts and processes for biogas upgrading:The effect of temperature and initial methane concentration on CO2 methanation[J]. Applied Energy, 2018, 227:206-212.
doi: 10.1016/j.apenergy.2017.08.080 |
[15] |
ASHOK J, ANG M L, KAWI S. Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts:Influence of preparation methods[J]. Catalysis Today, 2017, 281:304-311.
doi: 10.1016/j.cattod.2016.07.020 |
[16] |
LU H, YANG X, GAO G, et al. Metal(Fe,Co,Ce or La)doped nickel catalyst supported on ZrO2 modified mesoporous clays for CO and CO2 methanation[J]. Fuel, 2016, 183:335-344.
doi: 10.1016/j.fuel.2016.06.084 |
[17] |
CHEN Y, TOMISHIGE K, YOKOYAMA K, et al. Promoting effect of Pt,Pd and Ru noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2[J]. Applied Catalysis A:General, 1997, 165(1-2):335-347.
doi: 10.1016/S0926-860X(97)00216-0 |
[18] |
RONSCH S, SCHNEIDER J, MATTHISCHKE S, et al. Review on methanation―From fundamentals to current projects[J]. Fuel, 2016, 166:276-296.
doi: 10.1016/j.fuel.2015.10.111 |
[19] | SCHODER M, ARMBRUSTER U, MARTION A. Heterogeneously catalyzed hydrogenation of carbon dioxide to methane at increased reaction pressures[J]. Chemie Ingeieur Technik, 2013, 85(3):344-352. |
[20] |
GHAIB K, NITZ K, BEN-FARES F Z. Katalytische methanisierung von kohlenstoffdioxid[J]. Chemie Ingenieur Technik, 2016, 88(10):1435-1443.
doi: 10.1002/cite.201600066 |
[21] |
OCAMPO F, LOUIS B, KIWI-MINSKER L, et al. Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1-xO2 catalysts for carbon dioxide methanation[J]. Applied Catalysis A:General, 2011, 392(1-2):36-44.
doi: 10.1016/j.apcata.2010.10.025 |
[22] |
TROVARELLI A, LEITENBURG C, DOLCETTI G, et al. CO2 methanation under transient and steady-state conditions over Rh/CeO2 and CeO2-promoted Rh/SiO2:The role of surface and bulk ceria[J]. Journal of Catalysis, 1995, 151(1):111-124.
doi: 10.1006/jcat.1995.1014 |
[23] |
ZHI G, GUO X, WANG Y, et al. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide[J]. Catalysis Communications, 2011, 16(1):56-59.
doi: 10.1016/j.catcom.2011.08.037 |
[24] |
YU Y, JIN G, WANG Y, et al. Synthesis of natural gas from CO methanation over SiC supported Ni-Co bimetallic catalysts[J]. Catalysis Communications, 2013, 31:5-10.
doi: 10.1016/j.catcom.2012.11.005 |
[25] |
SCHAAF T, GRUNIG J, SCHUSTER M, et al. Storage of electrical energy in the natural gas grid-methanation of CO2-containing gases[J]. Chemie Ingenieur Technik, 2014, 86(4):476-485.
doi: 10.1002/cite.201300144 |
[26] | RONSCH S, ORTWEIN A. Methanation of synthetic gas―Fundamentals and process development[J]. Chemie Ingeieur Technik, 2011, 83(8):1200-1208. |
[27] | 张智鹤, 温彦博, 仉景鹏, 等. 燃煤电厂烟气CO2捕集-甲烷化利用工艺流程模拟研究[J]. 热力发电, 2021, 50(1):87-93. |
ZHANG Zhihe, WEN Yanbo, ZHANG Jingpeng, et al. Simulation study on the process of carbon dioxide capture and methanation utilization of flue gas in coal-fired power plants[J]. Thermal Power Generation, 2021, 50(1):87-93. | |
[28] | 孙路长, 王争荣, 吴冲, 等. 燃煤电厂万吨级碳捕集工程设计与运行优化研究[J]. 华电技术, 2021, 43(6):69-78. |
SUN Luchang, WANG Zhnegrong, WU Chong, et al. Research on operation optimization of a 10 000 t/a carbon capture project for coal-fired power plants[J]. Huadian Technology, 2021, 43(6):69-78. | |
[29] | KINGER G. Green energy conversion and storage[J]. Endbericht for FFG project, 2012,829943. |
[30] | SPECHT M, BRELLOCHS J, FRICK V, et al. The power to gas process:Storage of renewable energy in the natural gas grid via fixed bed methanation of CO2/H2[J]. Synthetic Natural Gas From Coal,Dry Biomass,and Power-to-gas Applications, 2016. |
[31] | 宋鹏飞, 单彤文, 李又武, 等. 氢气与二氧化碳甲烷化在现代能源体系中的新应用[J]. 现代化工, 2020, 40(10):4-9. |
SONG Pengfei, SHAN Tongwen, LI Youwu, et al. Several new application scenarios of methanation between hydrogen and carbon dioxide in modern energy system[J]. Modern Chemical Industry, 2020, 40(10):4-9. | |
[32] | 胡小夫, 沈建永, 王桦, 等. 氨基修饰多孔固体吸附剂吸附CO2的研究进展[J]. 华电技术, 2020, 42(10):36-40. |
HU Xiaofu, SHEN Jianyong, WANG Hua, et al. Research progress in amino-modification porous solid adsorbents applied in CO2adsorption[J]. Huadian Technology, 2020, 42(10):36-40. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | XU Zhifan, LI Huasen, LI Wenyuan, YU Kai. State of charge prediction for lithium-ion batteries based on KF-RCMNN [J]. Integrated Intelligent Energy, 2024, 46(7): 81-86. |
[4] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[5] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[6] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[7] | WANG Lin, KONG Xiaomin, ZHOU Zhongyu, LIU Jianping, WANG Xiaodong, ZHANG Ning. Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode [J]. Integrated Intelligent Energy, 2024, 46(6): 44-53. |
[8] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[9] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[10] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[11] | SHI Mingming, ZHU Rui, LIU Ruihuang. Joint economic dispatch of an AC/DC power system and a heating system [J]. Integrated Intelligent Energy, 2024, 46(4): 10-16. |
[12] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[13] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[14] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[15] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||